Aesthetic Medicine


Hinterlasse einen Kommentar

Gefäßalterung unter Schwerelosigkeit

Die kanadische Raumfahrtbehörde startet ein Forschungsprojekt „Gefäßalterung unter Schwerelosigkeit“ auf der ISS. Ein 6 monatiger Aufenthalt im All lässt das Herz-Kreislaufsystem um 20 Jahre altern.

Die Elastizität der Arterien nimmt ab und das Blutvolumen konzentriert sich im Brust-Kopfbereich.

Durch ein spezielles Blutdruckmessgerät, das u.a. von der Fa. I.E.M. Stolberg entwickelt wurde, können neben dem peripheren, der zentrale Blutdruck, die Gefäßelastizität und die Pulswellengeschwindigkeit gemessen werden.


Hinterlasse einen Kommentar

Alpha Brainwaves and chronic pain

Alpha waves or Schumann’s frequency (7,83 Hz) reduce chronic pain. Brain wave tech® – different frequencies (f.e. 410 Hz right and 420 Hz left ear result in brain waves of 10 Hz) produces a music for treatment of chronic pain.

www.jpain.org/article/S1526-5900(18)30642-4/fulltext


Hinterlasse einen Kommentar

Alzheimer: die Dollarzeichen in den Augen der Pharmaindustrie

www.nzz.ch/amp/finanzen/ein-medikament-gegen-demenz-waere-fuer-die-gesundheitsbranche-so-etwas-wie-der-heilige-gral-ld.1432527

Laut Mina Marmor, Senior-Portfoliomanagerin bei dem Unternehmen Sectoral Asset Management, gibt es in der Wissenschaft verschiedene Thesen, was die Ursache für den Ausbruch der Alzheimer-Krankheit angeht. Führend sei die Annahme, dass sich Beta-Amyloid-Ablagerungen im Gehirn ansammelten und für einen Schwund im Gehirn sorgten. Derzeit würden 112 Medikamente gegen Alzheimer entwickelt, wie aktuelle Berichte zeigten. Rund die Hälfte davon fokussiere auf diese Ablagerungen.

Eine multikausale chronische Krankheit kann nicht monokausal mit einem Medikament behandelt werden.

Es stellen sich mir folgende Fragen:

1. Warum wird das physiologische Protein Beta-Amyloid, das für das Erinnerungsvermögen im Hippocampus essentiell ist, plötzlich gehirntoxisch?

2. warum werden veränderte Beta-Amyloid Peptide nicht vom Immun- und Lymphsystem des Gehirns entsorgt?

3. welche anderen Faktoren führen nach jahrzehntelanger Latenz zum Ausbruch von neurodegenerativen Erkrankungen?

4. warum nehmen kognitive Störungen und neurotoxische Erkrankungen in den letzten Jahrzehnten derart explosionsartig zu?

5. könnten nicht Umweltfaktoren, Lebensstil, Ernährung (z.B. EPA, DHA) und Polypharmazie nicht das Missing link sein?

6. führt der derzeitige Forschungsansatz nicht wie vor 50 Jahren die Lipidforschung mit der Verteufelung der lebensnotwendigen Hirnsubstanz Cholesterin in die Irre?

7. sind Statine durch Schädigung der Nervenmembranen nicht neurotoxisch und fördern die Entwicklung von neurodegenerativen Erkrankungen?


Hinterlasse einen Kommentar

Das Serotonin-System des Gehirns ist komplexer als bisher angenommen

Die Therapie mit SSRIs setzt ein einheitliches Serotonin-System voraus.

Neueste Forschungsergebnisse zeigen, warum schwere Nebenwirkungen bei dieser Medikamentengruppe auftreten.

Besonders bei geriatrischen Patienten muss die Indikation für eine Medikation mit SSRIs sehr streng gestellt werden.

AUGUST 23, 2018

Stanford scientists paint nuanced picture of brain system regulating moods, movements

New findings reveal that the brain’s serotonin system ­– which regulates everything from our moods to our movements – is made up of multiple parallel pathways that affect the brain in different, and sometimes opposing, ways.

BY KER THAN

As Liqun Luo was writing his introductory textbook on neuroscience in 2012, he found himself in a quandary. He needed to include a section about a vital system in the brain controlled by the chemical messenger serotonin, which has been implicated in everything from mood to movement regulation. But the research was still far from clear on what effect serotonin has on the mammalian brain.

A 3D rendering of the serotonin system in the left hemisphere of the mouse brain reveals two groups of serotonin neurons in the dorsal raphe that project to either cortical regions (blue) or subcortical regions (green) while rarely crossing into the other’s domain. (Image credit: Jing Ren)

“Scientists were reporting divergent findings,” said Luo, who is the Ann and Bill Swindells Professor in the School of Humanities and Sciences at Stanford University. “Some found that serotonin promotes pleasure. Another group said that it increases anxiety while suppressing locomotion, while others argued the opposite.”

Fast forward six years, and Luo’s team thinks it has reconciled those earlier confounding results. Using neuroanatomical methods that they invented, his group showed that the serotonin system is actually composed of at least two, and likely more, parallel subsystems that work in concert to affect the brain in different, and sometimes opposing, ways. For instance, one subsystem promotes anxiety, whereas the other promotes active coping in the face of challenges.

“The field’s understanding of the serotonin system was like the story of the blind men touching the elephant,” Luo said. “Scientists were discovering distinct functions of serotonin in the brain and attributing them to a monolithic serotonin system, which at least partly accounts for the controversy about what serotonin actually does. This study allows us to see different parts of the elephant at the same time.”

The findings, published online on August 23 in the journal Cell, could have implications for the treatment of depression and anxiety, which involves prescribing drugs such as Prozac that target the serotonin system – so-called SSRIs (selective serotonin reuptake inhibitors). However, these drugs often trigger a host of side effects, some of which are so intolerable that patients stop taking them.

“If we can target the relevant pathways of the serotonin system individually, then we may be able to eliminate the unwanted side effects and treat only the disorder,” said study first author Jing Ren, a postdoctoral fellow in Luo’s lab.

Organized projections of neurons

The Stanford scientists focused on a region of the brainstem known as the dorsal raphe, which contains the largest single concentration in the mammalian brain of neurons that all transmit signals by releasing serotonin (about 9,000).

The nerve fibers, or axons, of these dorsal raphe neurons send out a sprawling network of connections to many critical forebrain areas that carry out a host of functions, including thinking, memory, and the regulation of moods and bodily functions. By injecting viruses that infect serotonin axons in these regions, Ren and her colleagues were able to trace the connections back to their origin neurons in the dorsal raphe.

This allowed them to create a visual map of projections between the dense concentration of serotonin-releasing neurons in the brainstem to the various regions of the forebrain that they influence. The map revealed two distinct groups of serotonin-releasing neurons in the dorsal raphe, which connected to cortical and subcortical regions in the brain.

“Serotonin neurons in the dorsal raphe project to a bunch of places throughout the brain, but those bunches of places are organized,” Luo said. “That wasn’t known before.”

Two parts of the elephant

In a series of behavioral tests, the scientists also showed that serotonin neurons from the two groups can respond differently to stimuli. For example, neurons in both groups fired in response to mice receiving rewards like sips of sugar water but they showed opposite responses to punishments like mild foot shocks.

“We now understand why some scientists thought serotonin neurons are activated by punishment, while others thought it was inhibited by punishment. Both are correct – it just depends on which subtype you’re looking at,” Luo said.

What’s more, the group found that the serotonin neurons themselves were more complex than originally thought. Rather than just transmitting messages with serotonin, the cortical-projecting neurons also released a chemical messenger called glutamate – making them one of the few known examples of neurons in the brain that release two different chemicals.

“It raises the question of whether we should even be calling these serotonin neurons because neurons are named after the neurotransmitters they release,” Ren said.

Taken together, these findings indicate that the brain’s serotonin system is not made up of a homogenous population of neurons but rather many subpopulations acting in concert. Luo’s team has identified two groups, but there could be many others.

In fact, Robert Malenka, a professor and associate chair of psychiatry and behavioral sciences at Stanford’s School of Medicine, and his team recently discovered a group of serotonin neurons in the dorsal raphe that project to the nucleus accumbens, the part of the brain that promotes social behaviors.

“The two groups that we found don’t send axons to the nucleus accumbens, so this is clearly a third group,” Luo said. “We identified two parts of the elephant, but there are more parts to discover.”

Luo is also an investigator at the Howard Hughes Medical Institute in Maryland and a member of Stanford Bio-X, the Stanford Cancer Institute, and the Stanford Neurosciences Institute. Other Stanford coauthors on the study include Drew Friedmann, Jing Xiong, Cindy Liu, Brielle Ferguson, Tanya Weerakkody, Katherine DeLoach, Chen Ran, Albert Pun, Yanwen Sun, Brandon Weissbourd, John Huguenard, and Mark Horowitz.

The research was supported by BRAIN initiative grants from the National Institutes of Health and National Science Foundation.